Comparing Matched Polymer:Fullerene Solar Cells Made by Solution- Sequential Processing and Traditional Blend Casting: Nanoscale Structure and Device Performance
نویسندگان
چکیده
Polymer:fullerene bulk heterojunction (BHJ) solar cell active layers can be created by traditional blend casting (BC), where the components are mixed together in solution before deposition, or by sequential processing (SqP), where the pure polymer and fullerene materials are cast sequentially from different solutions. Presently, however, the relative merits of SqP as compared to BC are not fully understood because there has yet to be an equivalent (compositionand thickness-matched layer) comparison between the two processing techniques. The main reason why matched SqP and BC devices have not been compared is because the composition of SqP active layers has not been accurately known. In this paper, we present a novel technique for accurately measuring the polymer:fullerene film composition in SqP active layers, which allows us to make the first comparisons between rigorously compositionand thickness-matched BHJ organic solar cells made by SqP and traditional BC. We discover that, in optimal photovoltaic devices, SqP active layers have a very similar composition as their optimized BC counterparts (≈44−50 mass % PCBM). We then present a thorough investigation of the morphological and device properties of thicknessand composition-matched P3HT:PCBM SqP and BC active layers in order to better understand the advantages and drawbacks of both processing approaches. For our matched devices, we find that small-area SqP cells perform better than BC cells due to both superior film quality and enhanced optical absorption from more crystalline P3HT. The enhanced film quality of SqP active layers also results in higher performance and significantly better reproducibility in larger-area devices, indicating that SqP is more amenable to scaling than the traditional BC approach. X-ray diffraction, UV−vis absorption, and energy-filtered transmission electron tomography collectively show that annealed SqP active layers have a finer-scale blend morphology and more crystalline polymer and fullerene domains when compared to equivalently processed BC active layers. Charge extraction by linearly increasing voltage (CELIV) measurements, combined with X-ray photoelectron spectroscopy, also show that the top (nonsubstrate) interface for SqP films is slightly richer in PCBM compared to matched BC active layers. Despite these clear differences in bulk and vertical morphology, transient photovoltage, transient photocurrent, and subgap external quantum efficiency measurements all indicate that the interfacial electronic processes occurring at P3HT:PCBM heterojunctions are essentially identical in matched-annealed SqP and BC active layers, suggesting that device physics are surprisingly robust with respect to the details of the BHJ morphology.
منابع مشابه
Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored SemiOrthogonal Solvent Blends
obtaining such effi ciencies has proven to be a major challenge due to the high sensitivity of device performance on the nm-scale morphology of the polymer and fullerene components. [ 10–17 ] To achieve the ideal nm-scale bulk heterojunction (BHJ) morphology for photovoltaic applications, two solution-based processing methods can be used: blend casting (BC) [ 18,19 ] and sequential processing (...
متن کاملUltrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices
UNLABELLED A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non...
متن کاملDispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend
Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is...
متن کاملFabrication of Inorganic Sensitized Solar Cells by Drop Casting Deposition of PbSe and PbTe on the TiO2 Surface
In this work, PbSe and PbTe sensitized TiO2 solar cells were fabricated. PbSe and PbTe nanostructure was deposited on the TiO2 surface via a drop cast method. The fabricated surfaces were examined by atomic force microscopy (AFM). Also the optical properties of the layers were studied by diffuse reflectance spectroscopy (DRS) spectra. The morphology of the surfaces was obtained by scanning elec...
متن کاملBimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells
Organic photovoltaics have recently attracted tremendous attention in industry and academia since they offer the potential to significantly change energy production by drastically reducing the manufacturing cost for solar cells. Organic materials are flexible, lightweight and can be fabricated over large areas via low cost solution-based processing technologies. The most common solar cell imple...
متن کامل